вторник, 30 декабря 2008 г.

Образцы решения типовых задач на проценты

ОСНОВНЫЕ ТИПЫ РЕШЕНИЯ ЗАДАЧ НА ПРОЦЕНТЫ

I. НАХОЖДЕНИЕ ЧАСТИ ОТ ЦЕЛОГО

Чтобы найти часть (%) от целого, надо число умножить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: В классе 32 ученика. Во время контрольной работы отсутствовало 12,5% учащихся. Найди, сколько учеников отсутствовало?
РЕШЕНИЕ 1: Целое в этой задаче – общее количество учащихся (32).
12,5% = 0,125
32 · 0,125 = 4
РЕШЕНИЕ 2: Пусть х учеников отсутствовали, что составляет 12,5%. Если 32 ученика –
общее количество учеников (100%), то
32 ученика – 100%
х учеников – 12,5%

х =

ОТВЕТ: В классе отсутствовало 4 ученика.



II. НАХОЖДЕНИЕ ЦЕЛОГО ПО ЕГО ЧАСТИ

Чтобы найти целое по его части (%-ам), надо число разделить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: Коля истратил в парке аттракционов 120 крон, что составило75% всех его карманных денег. Сколько было карманных денег у Коли до прихода в парк аттракционов?
РЕШЕНИЕ 1: В этой задаче надо найти целое, если известна данная часть и значение
этой части.
75% = 0,75
120 : 0,75 = 160

РЕШЕНИЕ 2: Пусть х крон было у Коли, что составляет целое, т.е 100%. Если он потратил 120 крон, что составило 75%, то
120 крон– 75 %
х крон – 100 %

х =

ОТВЕТ:У Коли было 160 крон.


III. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ОТНОШЕНИЯ ДВУХ ЧИСЕЛ

ТИПОВОЙ ВОПРОС:
СКОЛЬКО % СОСТАВЛЯЕТ ОДНА ВЕЛИЧИНА ОТ ДРУГОЙ?


ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет ширина от длины? (Длина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2:
В этой задаче длина прямоугольника 32м составляет 100%, тогда ширина 20м составляет х%. Составим и решим пропорцию:
20 метров – х %
32 метра – 100 %

х =

ОТВЕТ: Ширина составляет от длины 62,5%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет длина от ширины? (Ширина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче ширина прямоугольника 20м составляет 100%, тогда длина 32м составляет х%. Составим и решим пропорцию:
20 метров – 100 %
32 метра – х %

х =

ОТВЕТ: Длина составляет от ширины 160%.


IV. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ИЗМЕНЕНИЯ ВЕЛИЧИНЫ

ТИПОВОЙ ВОПРОС:
НА СКОЛЬКО % ИЗМЕНИЛАСЬ (УВЕЛИЧИЛАСЬ, УМЕНЬШИЛАСЬ) ПЕРВОНАЧАЛЬНАЯ ВЕЛИЧИНА?

Чтобы найти изменение величины в % надо:
1) найти на сколько изменилась величина (без %)
2) разделить полученную величину из п.1) на величину, являющуюся основой для сравнения
3) перевести результат в % (выполнив умножение на 100%)


ПРИМЕР: Цена платья снизилась с 1250 крон до 1000 крон. Найди на сколько процентов снизилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1250 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:
ОТВЕТ: Цена платья уменьшилась на 20%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР:
Цена платья повысилась с 1000 крон до 1250 крон. Найди на сколько процентов повысилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1000 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:

РЕШЕНИЕ 2:
1250 –1000= 250 (кр) на столько изменилась цена
В этой задаче первоначальная цена 1000 крон 100%, тогда изменение цены 250 крон составляет х%. Составим и решим пропорцию:
1000 крон – 100 %
250 крон – х %

х =
ОТВЕТ: Цена платья увеличилась на 25%.




V. ПОСЛЕДОВАТЕЛЬНОЕ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ (ЧИСЛА)

ПРИМЕР:
Число уменьшили на 15%, а затем увеличили на 20%. Найди на сколько процентов изменилось число?

Самая распространенная ошибка: число увеличилось на 5 %.

РЕШЕНИЕ 1:
1) Хотя исходное число не дано, для простоты решения можно принять его за 100 (т.е. одно целое или 1)
2) Если число уменьшилось на 15%, то полученное число составит 85%, или от 100 это было бы 85.
3) Теперь полученный результат надо увеличить на 20%, т.е
85 – 100%
а новое число х – 120% (т.к. увеличилось на 20%)

х =
4)Таким образом в результате изменений число 100 (первоначальное) изменилось и стало 102, а это означает, что первоначальное число увеличилось на 2%


РЕШЕНИЕ 2:
1) Пусть исходное число Х
2) Если число уменьшилось на 15%, то полученное число составит 85% от Х, т.е. 0,85Х.
3) Теперь полученное число надо увеличить на 20%, т.е
0,85Х – 100%
а новое число ? – 120% (т.к. увеличилось на 20%)


? =
4) Таким образом в результате изменений число Х (первоначальное), является основой для сравнения, а число 1,02Х(полученное), (см. IV тип решения задач), тогда




ОТВЕТ: Число увеличилось на 2%.

3 комментария:

  1. Спасибо!!! Хоть могу теперь объяснить сынам:))) Оно ж в ЕГЭ теперь обязательно из задач...

    ОтветитьУдалить